

Problem of the Week

(SEM - VI)

Problem Posting Date: 24.03.22
Due Date: 31.03.22

Any One:

1. Let $f_{1}, f_{2}, \ldots, f_{n}$ be continuous real valued functions on $[a, b]$. Show that the set $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is linearly dependent on $[a, b]$ if and only if

$$
\left.\operatorname{det} \int_{a}^{b} f_{i}(x) f_{j}(x) d x\right)=0
$$

2. Let $\alpha \& \beta$ be real numbers such that the subgroup Γ of $(\mathbb{R},+)$ generated by $\alpha \& \beta$ is a closed set. Prove that $\alpha \& \beta$ are linearly dependent over \mathbb{Q}.

Brief Solution of the Problem Posted on 24.03.22

1. Claim: $0 \notin \Gamma /$

If $0 \in \Gamma /$ and Γ contains all integer multiples of its elements so Γ is dense in \mathbb{R}. But then $\Gamma=\mathbb{R}$, since Γ is closed in \mathbb{R}. But it is not possible as Γ is countable. So $0 \notin \Gamma^{\prime}$. It implies $\exists \gamma>0, \gamma \in \Gamma$. If $x \in\ulcorner \& \mathrm{n}$ is the largest integer such that $n \gamma \leq x$ then $x-n \gamma \in\lceil \& 0<x-n \gamma<\gamma$ hence $x-n \gamma=0$.
2. Let $G=G_{i j}=\int_{a}^{b} f_{i}(x) f_{j}(x) d x$. If $\operatorname{det} G=0$ then G is singular. Let a be a non- zero n-vector with
$G a=0$ then $a^{T} G a=0=\sum_{i=1}^{n} \sum_{j=1}^{n} \int_{a}^{b} a_{i} f_{i}(x) a_{j} f_{j}(x) d x=$ $\int_{a}^{b}\left(\sum_{i=1}^{n} a_{i} f_{i}(x)\right)^{2} d x$
Hence the set is linearly dependent.
The other part is an easy calculation.

