

DEPARTMENT OF MATHEMATICS Jhargram Raj College JHARGRAM:: 721507

Students' Enrichment Programme

Problem of the Week

(SEM - VI)

Problem Posting Date: 24.03.22

Due Date: 31.03.22

Any One:

1. Let $f_1, f_2, ..., f_n$ be continuous real valued functions on [a, b]. Show that the set $\{f_1, f_2, ..., f_n\}$ is linearly dependent on [a, b] if and only if

$$\det \mathbb{A} \int_{a}^{b} f_{i}(x) f_{j}(x) dx = 0$$

2. Let $\alpha \& \beta$ be real numbers such that the subgroup Γ of $(\mathbb{R}, +)$ generated by $\alpha \& \beta$ is a closed set. Prove that $\alpha \& \beta$ are linearly dependent over \mathbb{Q} .

.....

Brief Solution of the Problem Posted on 24.03.22

1. Claim: 0 ∉ Γ′

If $0 \in \Gamma'$ and Γ contains all integer multiples of its elements so Γ is dense in \mathbb{R} . But then $\Gamma = \mathbb{R}$, since Γ is closed in \mathbb{R} . But it is not possible as Γ is countable. So $0 \notin \Gamma'$. It implies $\exists \gamma > 0, \gamma \in \Gamma$. If $x \in \Gamma$ & n is the largest integer such that $n\gamma \leq x$ then $x - n\gamma \in \Gamma \& 0 < x - n\gamma < \gamma$ hence $x - n\gamma = 0$.

2. Let $G = G_{ij} = \int_a^b f_i(x) f_j(x) dx$. If det G = 0 then G is singular. Let *a* be a non-zero n-vector with Ga = 0 then $a^T Ga = 0 = \sum_{i=1}^n \sum_{j=1}^n \int_a^b a_i f_i(x) a_j f_j(x) dx = \int_a^b (\sum_{i=1}^n a_i f_i(x))^2 dx$ Hence the set is linearly dependent.

The other part is an easy calculation.